REACTIONS OF γ-SULTINES WITH ELECTROPHILIC REAGENTS. 3*. CHLORINATION OF 3,5-DIARYL-1,2-OXATHIOLANE 2-OXIDES

E. V. Grigoryev, L. G. Saginova, and I. Yu. Kleymenova

The influence of the nature of the aryl substituents and the reaction conditions for the chlorination of 3,5-diphenyl-1,2-oxathiolane 2-oxide and 3,5-bis(4-methoxyphenyl)-1,2-oxathiolane 2-oxide have been studied. Possible mechanisms for the chlorination of γ -sultines are discussed.

Keywords: 1,3-diaryl-1,3-dichloropropanes, diastereomers, 3-chloro-1,3-diphenylpropanesulfonyl chloride, 1,2-oxathiolane 2-oxides (γ -sultines), diastereoselectivity, chlorination.

There are practically no studies of the chlorination of γ -sultines. A study of the bromination of 3,5-diaryl-1,2-oxathiolane 2-oxides, which occurred stereospecifically to give high yields of 1,3-diaryl-1,3-dibromopropanes, has been reported [1, 2]. Chlorination has been reported for only a few sultines: the products were chlorine substituted sulfonyl chlorides [3-5].

In the present work the chlorination of 3,5-diaryl-1,2-oxathiolane 2-oxides was studied. The compounds studied were 3,5-diphenyl-1,2-oxathiolane 2-oxide (1a) and 3,5-bis(4-methoxyphenyl)-1,2-oxathiolane 2-oxide (1b). The chlorinating agents used were a saturated solution of chlorine in chloroform and sulfuryl chloride. The reactions were monitored by TLC. The quantitative composition of the reaction mixtures was analysed by ¹H NMR spectroscopy.

 γ -Sultines **1a**,**b** are known to exist as the four diastereomers **A-D** [2]. The sultine **1a** used in this study was either the individual diastereomer **A**, having the *cis,cis* configuration of the five-membered ring [6], or the mixture of the diastereomers **A-D**, whereas the sultine **1b** was used only as a mixture of the diastereomers **A-D**.

Reaction of the diastereomer A of compound 1a with chlorine led to the formation in 90% yield of a mixture of the diastereomers of the sulfonyl chloride 2a (*threo-erythro*, 88:12) and 10% of the *dl*-form of the dichloride 3a (Scheme 1, Table 1).

Scheme 1

* For paper 2 see [1].

M. V. Lomonosov Moscow State University, Moscow 119899, Russia; e-mail: saginova@org.chem.msu.ru, evg@org.chem.msu.ru. Translated from Khimiya Geterotsiklicheskikh Soedinenii, No. 7, 1053-1059, July, 2003. Original article submitted November 21, 2000.

The sulfonyl chloride 2a proved to be an unstable compound: after keeping the reaction mixture in chloroform solution for a month at 0°C it consisted of 91% of the diastereomer *dl*-3a and 9% of a mixture of the diastereomers of 2a (*threo-erythro*, 63:37). Chlorination of a mixture of the diastereomers A-D of sultine 1a under analogous conditions gave 95% of a mixture of diastereomers of 2a (*threo-erythro*, 80:20) and 5% of the *dl*-diastereomer of 3a. It can be concluded from these results that chlorination of the sultine 1a occurs stereospecifically and can be expressed by Scheme 2.

Scheme 2

threo-2a + erythro-2a

It follows from these schemes that the predominant formation of the *threo*-diastereomer of the sulfonyl chloride **2a** probably occurs *via* an S_N 2 mechanism with inversion of the configuration of atom $C_{(5)}$ of the cyclic cationic intermediate, formed as a result of electrophilic attack by chlorine on the unshared electron pairs of the sulfur atom. Formation by the S_N 1 mechanism is considerably less likely because it requires the formation of the weakly stabilised benzyl carbocation. Subsequent decomposition of the *threo*-**2a** diastereomer occurs stereoselectively to give the *dl*-diastereomer of the dichloride **3a** exclusively. Since the unstable sulfonyl chloride cannot be isolated in the pure form, it was converted into the corresponding sulfonamide **4a** by reaction

Substrate, diastereomeric composition, %	Time, h	Composition of the reaction mixture, %	Stereochemical composition of the reaction mixture, %
1a-A	168	2a , 91 3a , 9	2a , threo-erythro, 88:12 3a , dl 100
1а , А–В–С–D , 54:17:20:9	168	2a , 95 3a , 5	2a , threo-erythro, 80:20 3a , dl 100
1b,* А-В-С-D , 57:18:18:7	5	3b , 51* ²	3b , <i>dl</i> – <i>meso</i> , 56:44
1b ,* ³ A–B–C–D , 57:18:18:7	24	3b , 100	3b , <i>dl</i> -meso, 56:44

TABLE 1. Results of the Interaction of the γ -Sultines **1a,b** with Chlorine in CHCl₃ at 0°C

* Reaction carried out at -10°C.

 $*^2$ The reaction mixture contained 49% of sultine 1b, A:B:C:D 64:11:17:8.

*³ A two fold excess of SO₂Cl₂ was used as chlorinating agent.

with diethylamine to confirm the structure. It should be noted that the sulfonyl chloride starting material **2a** consisted of an 80:20 mixture of the *threo-erythro* diastereomers, whereas the sulfonamide **4a** obtained consisted of a 1:1 (equimolar) mixture of the *threo-erythro* diastereomers, which can be explained by Scheme 3.

Scheme 3

As a result of chlorination of a diastereomeric mixture of the sultine 3,5-bis(4-methoxyphenyl)-1,2oxathiolane 2-oxide (**1b**, **A-D**) with a solution of chlorine at -10° C for 5 h a reaction mixture was obtained which consisted of 51% of an equimolar mixture of the *dl*- and *meso*-diastereomers of the dichloride **3b** and 49% of a mixture of diastereomers of the starting material, sultine **1b** (see Scheme 4 and Table 1).

Scheme 4

1b, **A**-**D** $\xrightarrow{\text{Cl}_2, \text{CHCl}_3}_{-10 \text{ oC}}$ ArCHCH₂CHAr + ArCHCH₂CHAr $\overrightarrow{\text{Cl}}$ SO₂Cl Cl Cl Cl dl-3b meso-3b Ar = 4-MeOC₆H₄

Further treatment of the reaction mixture with a solution of chlorine in chloroform produced a complex mixture of 1,3-diaryl-1,3-dichloropropanes with chlorine-substituted aromatic substituents and products of destruction.

When sulfuryl chloride was used in the chlorination reaction sultine **1a** did not react, but, in contrast, sultine **1b** reacted readily to give a mixture of the diastereomers of dichloride **3b**. To obtain a maximum yield it was necessary to use a two-fold excess of sulfuryl chloride (see Table 1). The reaction probably occurs according to Scheme 5.

The reaction is very similar to that described above for the chlorination of sultine **1a**. Sulfuryl chloride evidently serves as a source of the electrophile chlorine in the absence of a radical initiator, as data from [5, 7, 8] on the interaction of sulfuryl chloride with sulfoxides indicate. In distinction from sultine **1a**, the subsequent conversion of the cyclic cationic intermediate occurs via the formation of stabilised open chain anisyl carbocations which give rise to a mixture of diastereomers of compound **3b**. The sulfonyl chloride **2b** was not observed in this reaction which may be linked either to its instability with rapid loss of the sulfo group to give compound **3b** (Scheme 5), or with the possibility of the reaction shown in Scheme 6 with a different direction of opening of the cyclic intermediate analogous to the bromination of sultine **1b** [2].

Compound	Chemical shifts, δ , ppm (coupling constants, <i>J</i> , Hz)								
	CH ₂	CHCl	CHS	Et ₂ N	CH _{Ar}				
2a-threo	$3.16, 3.37* (2H, {}^{2}J_{AB} = 14.0)$	4.76 (1H, dd, ${}^{3}J_{AM} = 9.4$, ${}^{3}J_{BM} = 6.2$)	4.43 (1H, dd, ${}^{3}J_{AX} = 4.8$, ${}^{3}J_{BX} = 10.0$)	_	7.2-7.6 (10H, m)				
2a-erythro	2.93, 3.28* (2H, ${}^{2}J_{AB} = 14.4$)	5.20 (1H, dd, ${}^{3}J_{AM} = 11.4$, ${}^{3}J_{BM} = 3.0$)	4.53 (1H, dd, ${}^{3}J_{AX} = 3.2$, ${}^{3}J_{BX} = 11.6$)	_	7.2-7.6 (10H, m)				
4a-threo	2.95, 3.17* (2H, ${}^{2}J_{AB} = 14.0$)	4.83 (1H, dd, ${}^{3}J_{AX} = 8.8$, ${}^{3}J_{BX} = 6.8$)	$3.87 (1H, dd, {}^{3}J_{AM} = 5.2, {}^{3}J_{BM} = 9.2)$	0.95 (6H, t, ${}^{3}J = 7.0$); 2.88 (4H, q, ${}^{3}J = 7.0$)	7.2-7.7 (10H, m)				
4a-erythro	2.76, 3.07^{*2} (2H, ${}^{2}J_{AB} = 14.0$)		$_{X} = 11.2, {}^{3}J_{BX} = 3.2);$ $_{Y} = 3.6, {}^{3}J_{BY} = 11.2)$	1.03 (6H, t, ${}^{3}J = 7.0$); 3.00 (4H, q, ${}^{3}J = 7.0$)	7.2-7.7 (10H, m)				
3a-dl	2.7 (2H, dd)	5.25 (2H, dd, ${}^{3}J = 6.4$, ${}^{3}J = 8.0$)	_	_	7.2-7.6 (10H, m)				
3b - <i>dl</i> * ³	2.77 (2H, t)	5.22 (2H, t, ${}^{3}J = 7.0$)	_	_	6.94 (8H, d); 7.35 (4H, d				
3b -meso* ³	2.74, 3.04* ⁴ (2H, ${}^{2}J_{AB} = 14.0$)	4.87 (2H, dd, ${}^{3}J_{AX} = 8.0$, ${}^{3}J_{BX} = 6.8$)	_	_	7.36 (4H, d, ${}^{3}J = 8.8$)				

TABLE 2. ¹H NMR Spectra of Compounds 2a, 3a,b, and 4a

 $\overline{* \text{ AB part of an ABMX system.}}$ $*^2 \text{ AB part of an ABXY system.}$ $*^3 \delta(\text{CH}_3\text{O}) = 3.83 \text{ ppm.}$ $*^4 \text{ AB part of an ABX}_2 \text{ system.}$

TABLE 3. ¹³C NMR Spectra of Compounds 2-4

<u> </u>	Chemical shifts, δ, ppm					
Compound	CH ₂	CHCl	CHS	CH _{Ar}	C _{Ar}	
2a- threo	40.10	58.75	78.61	127.14, 128.95, 129.31, 129.51, 130.27, 130.82	129.48, 138.62	
2a- erythro	39.98	59.68	79.58	126.82, 128.76, 129.22, 129.65, 130.29, 130.85	129.50, 137.84	
3a-dl	49.76	60.90		127.14, 128.77, 128.96	140.88	
3b-dl/meso*	49.35, 49.36	60.30, 60.81	—	114.15, 114.18, 128.34, 128.35	132.20, 132.82, 159.72, 159.78	
4a-threo/erythro* ²	40.16, 40.55	60.11, 60.72	65.78 66.32	126.91, 127.29, 128.53, 128.76, 128.87, 128.97, 129.00, 129.09, 129.19, 129.28, 129.75, 129.90	132.65, 133.22, 139.84, 140.87	

* Signal of the CH₃O group: 55.27 ppm.

 $*^{2}$ Signals of the Et₂N groups: 14.85 (CH₃), 42.53, 42.63 ppm (CH₂N).

Both reaction directions are equally likely for substrate **1b** and produce the same result. That sultine **1a** does not react with sulfuryl chloride may be explained by the fact that opening of the cyclic intermediate by the S_N 1 mechanism does not occur because of the lower stabilisation of the benzyl cation, while the SO₂Cl⁻ anion is evidently much less nucleophilic than the chloride anion, so that substitution by the S_N 2 mechanism is not possible under these conditions.

EXPERIMENTAL

 1 H (400 MHz) and 13 C (100 MHz) NMR spectra were recorded on a Varian VXR-400 machine in CDCl₃ solution. IR spectra of liquid films were recorded with a UR-20 spectrometer.

Details of the ¹H and ¹³C NMR spectra of compounds **2-4** are given in Tables 2 and 3.

3,5-Diaryl-1,2-oxathiolane 2-Oxides (1a,b) were synthesized by the reaction of the corresponding 1,2-diarylcyclopropanes with sulfur dioxide by a known method [9, 10].

Chlorination of 3,5-Diaryl-1,2-oxathiolane 2-Oxides (General Method). A saturated solution of chlorine in chloroform was added with stirring to a solution of the sultine (0.3 mmol) in chloroform (15 ml) freed from ethanol impurities (see Table 1). After the reaction had finished (monitored by TLC, Silufol carrier, eluent 4:1:1 CCl₄–CHCl₃–ether), the reaction mass was evaporated and the reaction products were analysed.

*threo-erthyro-***3-Chloro-1,3-diphenylsulfonyl Chloride (2a)**, yield 90-95%, unstable, decomposing viscous oil.

dl-1,3-Dichloro-1,3-diphenylpropane (3a). A solution of compound 2a in chloroform was kept for a month at 20°C. The solvent was then removed to give a yellow oil of the diastereomer *dl*-3a with a yield of 90%. The ¹H and ¹³C NMR spectra were identical to those reported previously [11].

 $(1R^*,3R^*)/(1R^*,3L^*)$ -N,N-Diethyl-3-chloro-1,3-diphenylpropanesulfonamide (4a). An excess of diethylamine was added stepwise to a solution of the sulfonyl chloride 2a in chloroform at 20°C, the mixture was stirred for 5 h, then poured into cold water acidified with hydrochloric acid, extracted with chloroform, washed with water to pH 7, and dried over CaCl₂. A yellow mass, 75% yield, was isolated after removal of the solvent. IR spectrum (thin layer): 1335, 1143 (SO₂). Found, %: C 61.42; H 6.65. C₁₉H₂₄ClNO₂S. Calculated, %: C 62.37; H 6.61.

dl/meso-1,3-Dichloro-1,3-bis(4-methoxyphenyl)propane (3b). A solution of sulfuryl chloride (0.27 g, 2 mmol) in chloroform was added dropwise to a solution of sultine 1b (0.3 g, 0.04 mmol) in chloroform cooled to 0°C. The mixture was stirred for a day at 0°C, evaporated, and the residue was recrystallized from 1:10 choroform–pentane, to give grayish white crystals, 95% yield; mp 99-100°C. Found, %: C 63.41; H 5.41. $C_{17}H_{18}Cl_2O_2$. Calculated, %: C 62.78, H 5.58.

REFERENCES

- 1. E. V. Grigor'ev and L. G. Saginova, *Khim. Geterotsikl. Soed.*, 228 (2003).
- 2. E. V. Grigor'ev and L. G. Saginova, *Khim. Geterotsikl. Soed.*, 120 (2003).
- 3. J. F. King, A. Hawson, B. L. Huston, L. J. Danks, and J. Komery, Can. J. Chem., 49, 943 (1971).
- 4. R. M. J. Liskamp, H. J. M. Zeegers, and H. C. J. Ottenheijm, J. Org. Chem., 46, 5408 (1981).
- 5. N. K. Sharma, F. de Reinach-Hirtzbach, and T. Durst, Can. J. Chem., 54, 3012 (1976).
- 6. E. V. Grigor'ev, A. V. Yatsenko, N. V. Novozhilov, L. G. Saginova, and V.S. Petrosyan, *Vestn. MGU*, *Ser. 2, Khimiya*, **34**, 87 (1993).
- 7. N. K. Sharma, F. Jung, and T. Durst, *Tetrahedron Lett.*, 14, 2863 (1973).
- 8. T. J. Connolly and T. Durst, *Tetrahedron Lett.*, **38**, 1337 (1997).

- 9. O. B. Bondarenko, T. I. Voevodskaya, L. G. Saginova, V. A. Tafeenko, and Yu. S. Shabarov, *Zh. Org. Khim.*, **23**, 1736 (1987).
- 10. O. B. Bondarenko, A. V. Buevich, T. I. Voevodskaya. L. G. Saginova, and Yu. S. Shabarov, *Zh. Org. Khim.*, **24**, 1937 (1988).
- 11. M. A. Miranda, J. Perez-Prieto, E. Font-Sanchis, K. Konya, and J. C. Scaiano, J. Org. Chem., 62, 5713 (1997).